On the Regularity Property of Semi-Markov Processes with Borel spaces¹

Óscar Vega-Amaya

Departamento de Matemáticas Universidad de Sonora México

October 27-28, 2011

¹Coloquio de Sistemas Estocásticos 2011, 50 Aniversario del Departamento de Matemáticas, CINVESTAV-IPN, México, D.F.

- Introduction
- 2 Semi-Markov processes
- Recurrent Markov chains
- 4 Regularity, recurrence and invariant probability measures
- 6 References

Introduction

- A semi-Markov process (SMP) combines the probabilistic structure of Markov chain and a renewal process as follows:
 - ullet it makes transitions according to Markov chain $X_n, n \in \mathbb{N}_0$;
 - the times spent between successive transitions are random variables $\delta_{n+1} \geq 0$;
 - the distribution of δ_{n+1} depends on the "present" state X_n ;
 - $T_n := \delta_1 + \cdots + \delta_n, \ n \in \mathbb{N}$, the time for the nth transition

Introduction

- A semi-Markov process (SMP) combines the probabilistic structure of Markov chain and a renewal process as follows:
 - ullet it makes transitions according to Markov chain $X_n, n \in \mathbb{N}_0$;
 - ullet the times spent between successive transitions are random variables $\delta_{n+1} \geq 0$;
 - ullet the distribution of δ_{n+1} depends on the "present" state X_n ;
 - $T_n := \delta_1 + \cdots + \delta_n, \ n \in \mathbb{N}$, the time for the nth transition
- **Problem**: determine whether the SMP experiences finite or infinitely many transitions in bounded time periods:

$$T_n \to \infty$$
 or $T_n \le M \quad \forall n \in \mathbb{N}$ for some $M > 0$?

- To guarantee the former property holds all what is need it is the transitions do not take place too quickly!
- Ross (1970), Cinlar (1975):

$$P[\delta_{n+1} \ge \varepsilon | X_n = x] \ge \theta \quad \forall x \in \mathbb{X}, n \in \mathbb{N}_0.$$

- To guarantee the former property holds all what is need it is the transitions do not take place too quickly!
- Ross (1970), Cinlar (1975):

$$P[\delta_{n+1} \ge \varepsilon | X_n = x] \ge \theta \quad \forall x \in \mathbb{X}, n \in \mathbb{N}_0.$$

They also prove that

$$T_n \to \infty$$
 a.s.

for **countable** SMP's asumming the "embedded" Markov chain reaches a recurrent state with probability one.

Semi-Markov processes

Semi-Markov processes

- Let $Q(\cdot, \cdot|\cdot)$ be a stochastic kernel on $\mathbb{X} \times \mathbb{R}_+$ given \mathbb{X} .
- $\{(X_n, \delta_{n+1}): n \in \mathbb{N}_0\}$ is the Markov chain defined on $(\Omega, \mathcal{F}, \mathbb{P}_x)$: $\mathbb{P}_x[X_0 = x] = 1$

$$\mathbb{P}_x[X_{n+1} \in B, \delta_{n+1} \le t | X_n = y] = Q(B, [0, t] | y)$$

- $\{(X_{n,}\delta_{n+1}): n \in \mathbb{N}_0\}$ is called *Markov renewal process* and it is usually thought of as a model of a stochastic system evolving as follows:
 - \bullet at time t=0 the system is observed in some initial state $X_0=x\in\mathbb{X};$
 - ullet it remains there for a nonnegative random time δ_1 ;
 - ullet the conditional distribution function of δ_1 is given by

$$F(t|x) := Q(X, [0, t]|x) \quad \forall t \in \mathbb{R}_+, x \in X$$

and known as holding time distribution;

the mean holding time function

$$\tau(x) := \int_0^\infty tF(dt|x), \ x \in \mathbb{X}$$

ullet at time δ_1 the system jumps to a new state $X_1=y\in\mathbb{X}$ according to the probability measure

$$P(B|x) := Q(B, \mathbb{R}_+|x);$$

- ullet it remains in $X_1=y$ up to the random time δ_2 and so on.
- The process $\{X_n, n \in \mathbb{N}_0\}$ is a Markov chain with transition probability $P(\cdot|\cdot)$.

• The system is tracked in continuous time by the process

$$Z_t = X_n$$
 if $T_n \le t < T_{n+1}$, $n \in \mathbb{X}_0$

• $\{Z_t, t \geq 0\}$ is called **semi-Markov process** with semi-Markov kernel $Q(\cdot, \cdot \mid \cdot)$

Definition (2.1)

The state $x \in \mathbb{X}$ is regular if

$$\lim_{n \to \infty} T_n = \infty \quad \mathbb{P}_x - a.s.$$

The semi-Markov process is regular if every state is regular.

• The kernel $Q(\cdot, \cdot \mid \cdot)$ can be disintegrated as

$$Q(B,[0,t]\mid x) = \int_B G(t\mid x,y) P(dy\mid x)$$

where

$$G(t \mid x, y) = \mathbb{P}[\delta_{n+1} \le t \mid X_n = x, X_{n+1} = y]$$

Proposition (2.2)

The random variables $\{\delta_n\}$ are conditionally independent given $\{X_n\}$:

$$\mathbb{P}[\delta_1 \le t_1, \dots, \delta_n \le t_n \mid X_0, \dots, X_n] = \prod_{k=0}^n G(t_k \mid X_{k-1}, X_k)$$

Recurrent Markov chains

Hernández-Lema and Lasserre (2003), Meyn and Tweedie (1993)

• A Markov chain $\{Y_n:n\in\mathbb{N}_0\}$ is said to be *irreducible* if there exists a nontrivial σ -finite measure $\nu(\cdot)$ on (\mathbb{X},\mathcal{B}) such that

$$\mathbb{E}_x \sum_{n=0}^{\infty} \mathbb{I}_B(Y_n) > 0 \quad \forall x \in \mathbb{X}, \nu(B) > 0, \ B \in \mathcal{B};$$

 $\nu(\cdot)$ is called *irreducibility measure*.

- If the Markov chain $\{Y_n : n \in \mathbb{N}_0\}$ is irreducible, then there exists a maximal irreducibility measure $\psi(\cdot)$:
 - $\bullet \psi(\cdot)$ is an irreducibility measure;
 - if $\nu(\cdot)$ is an irreducibility measure, then $\nu(\cdot) \ll \psi(\cdot)$.

• An irreducible Markov chain $\{Y_n : n \in \mathbb{N}_0\}$ is said to be *recurrent* if

$$\mathbb{E}_x \sum_{n=0}^{\infty} \mathbb{I}_A(Y_n) = \infty \quad \forall x \in \mathbb{X}, A \in \mathcal{B}^+, \tag{1}$$

where $\mathcal{B}^+ := \{B \in \mathcal{B} : \psi(B) > 0\}.$

• If instead of condition (1) we have

$$\sum_{n=0}^{\infty}\mathbb{I}_A(Y_n)=\infty\quad \mathbb{P}_x ext{-a.s.}\ orall x\in\mathbb{X},A\in\mathcal{B}^+,$$

then the Markov chain is said to be Harris recurrent.

Theorem (3.1)

If the Markov chain $\{Y_n : n \in \mathbb{N}_0\}$ is recurrent, then

$$X = H \cup N$$

where the measurable set H is full and absorbing :

•
$$\psi(N) = 0$$
; • $P(H|x) = 1$ for all $x \in H$.

Moreover, the Markov chain restricted to H is Harris recurrent, that is,

$$\sum_{n=0}^{\infty} \mathbb{I}_A(X_n) = \infty \quad \mathbb{P}_x\text{-a.s. } \forall x \in H, A \subset H, A \in \mathcal{B}^+.$$

Theorem (3.2)

Suppose that $\{Y_n : n \in \mathbb{N}_0\}$ has a unique invariant probability measure $\mu(\cdot)$:

$$\mu(B) = \int_{B} P(B \mid x) d\mu(x) \quad \forall B \in \mathcal{B}$$

(a) Then, for each function $v \in L_1(\mu)$ there exists a set $B_v \in \mathcal{B},$ with $\mu(B_v)=1$, such that

$$\frac{1}{n}\sum_{k=0}^{n-1}v(Y_n)\to\mu(v):=\int_{\mathbb{X}}\quad \mathbb{P}_x\text{-a.s. }\forall x\in B_v. \tag{2}$$

(b) If in addition the Markov chain is Harris recurrent, then (2) holds for all $x \in \mathbb{X}$.

Regularity, recurrence and invariant probability measures

Assumption (4.1)

The embedded Markov chain $X_n, n \in \mathbb{N}_0$, is Harris recurrent.

Define

$$\Delta(x) := \int_{\mathbb{R}_+} \exp(-t) F(dt \mid x), \quad x \in \mathbb{X}.$$

- $0 < \Delta(\cdot) \le 1$ and $\tau(\cdot) \ge 0$
- $\Delta(x) = 1 \Leftrightarrow F(0 \mid x) = 1 \Leftrightarrow \tau(x) = 0.$

Assumption (4.2)

The embedded Markov chain is irreducible and for some $\alpha < 1$

$$B := \{ x \in \mathbb{X} : \Delta(x) \le \alpha \} \in \mathcal{B}^+$$

Remark (4.3)

The conditional independence of $\{\delta_n : n \in \mathbb{N}_0\}$ implies that

$$\mathbb{E}_x[\exp(-T_n) \mid X_0, \dots, X_n] = \Delta(X_0) \cdots \Delta(X_n) \quad \mathbb{P}_x - a.s.$$

for every $n \in \mathbb{N}_0$. Thus,

$$T_n \to \infty$$
 \mathbb{P}_x -a.s. $\Leftrightarrow \Delta(X_0) \cdots \Delta(X_n) \to 0$ \mathbb{P}_x -a.s.

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

 $T_n \to \infty$ \mathbb{P}_x -a.s.

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

$$T_n \to \infty \mathbb{P}_x$$
-a.s.

Proof: $\sigma_1 := \inf\{k > 0 : X_k \in B\}, \quad \sigma_{n+1} := \inf\{k > \sigma(n) : X_k \in B\}$

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

$$T_n \to \infty \ \mathbb{P}_x$$
-a.s.

Proof:
$$\sigma_1 := \inf\{k > 0 : X_k \in B\}$$
, $\sigma_{n+1} := \inf\{k > \sigma(n) : X_k \in B\}$
 $S_n := \sum_{k=1}^n \mathbb{I}_B(X_k)$

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

$$T_n \to \infty \ \mathbb{P}_x$$
-a.s.

Proof:
$$\sigma_1 := \inf\{k > 0 : X_k \in B\}$$
, $\sigma_{n+1} := \inf\{k > \sigma(n) : X_k \in B\}$
 $S_n := \sum_{k=1}^n \mathbb{I}_B(X_k)$

Now observe

$$\Delta(X_0)\cdots\Delta(X_n)\leq \Delta(X_{\sigma(1)})\Delta(X_{\sigma(2)})\cdots\Delta(X_{\sigma(S_n)})\leq \alpha^{S_n}$$
 on the set $[S_n\neq 0].$

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

$$T_n \to \infty \ \mathbb{P}_x$$
-a.s.

Proof:
$$\sigma_1 := \inf\{k > 0 : X_k \in B\}$$
, $\sigma_{n+1} := \inf\{k > \sigma(n) : X_k \in B\}$
 $S_n := \sum_{k=1}^n \mathbb{I}_B(X_k)$

Now observe

$$\Delta(X_0)\cdots\Delta(X_n) \leq \Delta(X_{\sigma(1)})\Delta(X_{\sigma(2)})\cdots\Delta(X_{\sigma(S_n)}) \leq \alpha^{S_n}$$

on the set $[S_n \neq 0]$.

Thus, since $B \in \mathcal{B}^+$, Assumption 1 implies that $S_n \to \infty$ \mathbb{P}_x -a.s. for all $x \in \mathbb{X}$. Hence

If Assumptions 4.1 and 4.2 hold, then the SMP is regular:

$$T_n \to \infty \ \mathbb{P}_x$$
-a.s.

Proof:
$$\sigma_1 := \inf\{k > 0 : X_k \in B\}$$
, $\sigma_{n+1} := \inf\{k > \sigma(n) : X_k \in B\}$
 $S_n := \sum_{k=1}^n \mathbb{I}_B(X_k)$

Now observe

$$\Delta(X_0)\cdots\Delta(X_n)\leq \Delta(X_{\sigma(1)})\Delta(X_{\sigma(2)})\cdots\Delta(X_{\sigma(S_n)})\leq \alpha^{S_n}$$
 on the set $[S_n\neq 0].$

Thus, since $B \in \mathcal{B}^+$, Assumption 1 implies that $S_n \to \infty$ \mathbb{P}_x -a.s. for all $x \in \mathbb{X}$. Hence

$$\Delta(X_0)\cdots\Delta(X_n)\to 0$$
 \mathbb{P}_x -a.s. for all $x\in\mathbb{X}$,

which proves that the process is regular.

Suppose Assumption 2 holds. If the embedded Markov chain is recurrent and

$$\sigma := \inf\{k > 0 : X_k \in H\} < \infty \ \mathbb{P}_x$$
-a.s. $\forall x \in \mathbb{X}$

where H is the subset as in Theorem 3.1, then the SMP is regular.

Suppose Assumption 2 holds. If the embedded Markov chain is recurrent and

$$\sigma := \inf\{k > 0 : X_k \in H\} < \infty \ \mathbb{P}_x$$
-a.s. $\forall x \in \mathbb{X}$

where H is the subset as in Theorem 3.1, then the SMP is regular.

Proof: Observe $B' := B \cap H \in \mathcal{B}^+$. Now, proceed as in the proof of Theorem 4.4.

Assumption (4.6)

(a) The embedded Markov chain has a unique invariant probability measure;

Assumption (4.6)

(a) The embedded Markov chain has a unique invariant probability measure;

(b)
$$\mu(\Delta) = \int_{\mathbb{X}} \Delta(x) d\mu(x) < 1.$$

Assumption (4.6)

(a) The embedded Markov chain has a unique invariant probability measure;

(b)
$$\mu(\Delta) = \int_{\mathbb{X}} \Delta(x) d\mu(x) < 1.$$

Theorem (4.7)

- (a) If Assumption holds, then the SMP is regular for μ -almost all $x \in \mathbb{X}$.
- **(b)** If additionally, the embedded Markov chain is Harris recurrent, then the SMP is regular.

$$[\Delta(X_0)\cdots\Delta(X_n)]^{1/(n+1)} \le \frac{1}{n+1} \sum_{k=0}^n \Delta(X_k)$$

$$[\Delta(X_0)\cdots\Delta(X_n)]^{1/(n+1)} \le \frac{1}{n+1} \sum_{k=0}^n \Delta(X_k)$$

From Theorem 3.2(a) there exists a subset $B_{\Delta} \in \mathcal{B}$ with $\mu(B_{\Delta}) = 1$ such that

$$\frac{1}{n+1} \sum_{k=0}^{n} \Delta(X_k) \to \mu(\Delta) < 1 \quad \mathbb{P}_x \text{-a.s.} \quad \forall x \in B_{\Delta}$$

$$[\Delta(X_0)\cdots\Delta(X_n)]^{1/(n+1)} \le \frac{1}{n+1} \sum_{k=0}^n \Delta(X_k)$$

From Theorem 3.2(a) there exists a subset $B_{\Delta} \in \mathcal{B}$ with $\mu(B_{\Delta}) = 1$ such that

$$\frac{1}{n+1} \sum_{k=0}^{n} \Delta(X_k) \to \mu(\Delta) < 1 \quad \mathbb{P}_x \text{-a.s.} \quad \forall x \in B_{\Delta}$$

Therefore,

$$\Delta(X_0)\cdots\Delta(X_n)\to 0$$
 \mathbb{P}_x -a.s. $\forall x\in B_\Delta$.

$$[\Delta(X_0)\cdots\Delta(X_n)]^{1/(n+1)} \le \frac{1}{n+1} \sum_{k=0}^n \Delta(X_k)$$

From Theorem 3.2(a) there exists a subset $B_{\Delta} \in \mathcal{B}$ with $\mu(B_{\Delta}) = 1$ such that

$$\frac{1}{n+1} \sum_{k=0}^{n} \Delta(X_k) \to \mu(\Delta) < 1 \quad \mathbb{P}_x \text{-a.s.} \quad \forall x \in B_{\Delta}$$

Therefore,

$$\Delta(X_0)\cdots\Delta(X_n)\to 0$$
 \mathbb{P}_x -a.s. $\forall x\in B_\Delta$.

(b) The second statement follows from Theorem 3.2(b). ■

References

- R.N. Bhattacharya, M. Majumdar (1989), Controlled semi-Markov models—The discounted case, *J. Statist. Plann. Inf.* **21**, 365-381.
- E. Çinlar (1975), *Introduction to Stochastic Processes* (Prentice-Hall, Englewood Cliffs, New Jersey.
- O. Hernández-Lerma, J.B. Lasserre (2003), *Markov Chains and Invariant Probabilities*, Birkhäuser.
- S.P. Meyn, R.L. Tweedie (1993), *Markov Chains and Stochastic Stability*, Springer-Verlag, London.
- S.M. Ross (1970), Applied Probability Models with Optimization Applications, Holden-Day, San Francisco.

THANKS!