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INTRODUCTION

@ We are concerned with the numerical approximation of the solution
of a constrained discrete-time discounted MDP.

@ We are interested in obtaining explicit bounds for our approximation
errors (and not just “convergence”).
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INTRODUCTION

Introduction

@ We are concerned with the numerical approximation of the solution
of a constrained discrete-time discounted MDP.

@ We are interested in obtaining explicit bounds for our approximation
errors (and not just “convergence”).

@ We want to use discretization techniques suitable for the case of an
MDP with noncompact state space.

@ We are going to approximate an infinite dimensional LP problem by
a finite LP problem.
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MOTIVATION OF THE PROBLEM

Constrained discrete-time MDPs

Suppose that M is a (constrained) discrete-time MDP:
M= {X, A (A(x),x € X), P(dy|x, a), c(x, a), r(x, a)}.

@ The state space X is a locally compact Borel space (not necessarily
compact).

The action space A is a locally compact Borel space, and the action
sets A(x), for x € X, are compact.

The feasible state-actions set is K := {(x,a) € X x A: a € A(x)}.
P(B|x, a) is a stochastic kernel on X given K.

c:K— R and r: K— RY9 are measurable cost-per-stage functions.
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MOTIVATION OF THE PROBLEM

Constrained discrete-time MDPs

@ The total expected discounted cost of a policy 7 € I is

V(x,m,c):=E] [iatc(xt,at)},

t=0

where x € X is the initial state, and 0 < a < 1 is a discount factor.
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MOTIVATION OF THE PROBLEM

Constrained discrete-time MDPs

@ The total expected discounted cost of a policy 7 € I is
o0
Vix,m,c) = E7| Y afelx,a1)].
t=0

where x € X is the initial state, and 0 < a < 1 is a discount factor.

@ We want to approximate the solution of the constrained MDP
minimize V(xp,m,c) st. w €l and V(xp,m, r) < 6o,

where xg € X is the initial state and 6y € RY is the constraint
constant.

Tomas Prieto-Rumeau LP approximations of constrained MDPs



MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Consider a finite state and action discretization M of the control
model M, and use the optimal value of My as an approximation.

@ If the state space X is compact, then we select a finite grid x, € H
of states, with associated approximation error 6.

@ Solve the MDP with state space H with an approximation error 4.
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Here, we deal with a problem with noncompact state space X.
© Choose € > 0, and find a compact K. C X such that: “what
happens outside K. has a weight less than €”.
@ Discretize K. and obtain a d-approximation of its optimal solution.
© Obtain a (d + €)-approximation.
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Here, we deal with a problem with noncompact state space X.
© Choose € > 0, and find a compact K. C X such that: “what

happens outside K. has a weight less than €”.
@ Discretize K. and obtain a d-approximation of its optimal solution.

© Obtain a (d + €)-approximation.
@ Our approach: Use a discretization technique that proceeds in a
single step (and not in two steps, as above).

LP approximations of constrained MDPs
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Suppose that the stochastic kernel has a density with respect to
some probability measure p on X.

@ There exists a function p(y|x, a) on X x K such that

P(B|x,a) = /Bp(ylxva)u(dy) for B C X.
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Suppose that the stochastic kernel has a density with respect to
some probability measure p on X.

@ There exists a function p(y|x, a) on X x K such that

P(B|x,a) = /Bp(ylxva)u(dy) for B C X.

@ Obtain a discretization py on a finite set H of the distribution g,
and consider the discretized kernels

Pu(B]x, 3) = / ply |, 2)un(dy)

supported on H.
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

@ Suppose that the state space X is a subset of RY.

@ If Y is a random variable on R? with distribution u, let Yy be the
projection of Y (in the Lo(R9) norm) in the space of random
variables supported on N points in RY.

@ We call Yy the quantization of Y. We have explicit convergence
rates:

1Y = Yulla = O(N~Y).

@ There are “toolboxes” that can find explicitly the random variable

Yn for a given distribution p.
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MOTIVATION OF THE PROBLEM

Approximation of MDPs

Plan of work

@ Approximate the solution of the constrained MDP with transition
kernel P(B|x, a) by means of a constrained MDP with the quantized
transition kernel Py(B|x, a).

@ Obtain explicit bounds on the approximation error: given a precision
€ > 0, determine a priori the number of points N needed in the
quantization grid.

@ We use a mixture of dynamic programming and linear programming.

LP approximations of constrained MDPs
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MAIN RESULT

Dynamic programming vs. linear programming

The DP approach

@ In an unconstrained problem the optimal discounted cost is the
solution of the discounted cost optimality equation (DCOE)

V*(x) = inf <c(x,a)+ a/ V*(y)P(dy|x,a) ¢, for x € X.
acA(x) X

In this case, we could study the DCOE for the quantized kernels Py.
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MAIN RESULT

Dynamic programming vs. linear programming

The DP approach

@ In an unconstrained problem the optimal discounted cost is the
solution of the discounted cost optimality equation (DCOE)

V*(x) = inf {c(x,a) + a/X V*(y)P(dy|x, a)} , for x € X.

acA(x)

In this case, we could study the DCOE for the quantized kernels Py.
@ For a constrained problem, there exists A* € ]Ri such that

Vi(x) = aégfx){C(X78)+<>\*7r(X,a)*(1*a)90>

+a/X v*(y)P(dy|x,a)}.

This optimality equation is somehow useless because A* is unknown
and, besides, a minimizing policy might not be constrained optimal.
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MAIN RESULT

Dynamic programming vs. linear programming

The LP approach

@ Given a policy m € [, define the expected discounted state-action
occupation measure for measurable I C K C X x A:

o

ve() = a'PL{(x:,a) €T}

t=0

@ The space of “feasible measures” {v;}.cn = P is characterized by
means of linear constraints.

@ The unconstrained and constrained control problems are respectively
equivalent to the infinite dimensional LP problems

minimize v(c) st veP
minimize v(c) st. v€P and v(r)<bp.

@ Both problems are of the “same nature”.
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MAIN RESULT

Statement of the problem

Lipschitz continuity framework

o Given a function v : X — R we want to compare
Putx.a) = [ v(yplylx. a)u(ey) = ELV(V)p(Y1x. )]
and
Pv(x,2) = [ v()plybe, () = ELV(Yp(Yalx. )

@ We know that Yy is close to Y in the L(R9) norm.

@ Under adequate Lipschitz continuity conditions (in particular, v
must be Lipschitz continuous), we can show that

Pnv(x,a) is close to Pv(x, a).
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MAIN RESULT

Statement of the problem

Lipschitz continuity framework

@ Given a function v : K — R (interpreted as a cost function), define
the dynamic programming operators:

()0 = inf {atx.a)+a [ vivplyixalutan |

acA(x

and Tyv, with 1 replaced with .

@ We have that T"v and Tyv are close provided that v is Lipschitz
continuous.

@ Hence, we place ourselves in the context of a Lipschitz continuous
MDP.
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MAIN RESULT

Statement of the problem

Lipschitz continuity framework

@ The elements x — A(x), P, and u (the cost function) of the control
model M are Lipschitz continuous.

@ Then the optimal discounted cost V*, i.e., the solution of the DCOE

V*(x) = inf {u(x,a)Jroz/XV*(y)P(dy|x,a)}

acA(x)

is Lipschitz continuous.
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MAIN RESULT

Statement of the problem

Lipschitz continuity framework

@ The elements x — A(x), P, and u (the cost function) of the control
model M are Lipschitz continuous.

@ Then the optimal discounted cost V*, i.e., the solution of the DCOE
V¥(x) = inf {u(x, a) +a/ V*(y)P(dy|x, a)}
acA(x) b%

is Lipschitz continuous.

@ Note that x — V/(x, 7, u) is not, in general, continuous; but
x > infren V(x, m, u) is continuous.
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MAIN RESULT

The linear programming approach

@ The LP that finds an optimal policy for the constrained MDP is LIP:

J*=min v(c) st v(r—(1—a)f) <0 and

v(B x A) = 6,(B) + a/K P(B|x, a)v(dx, da) for B C X.
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MAIN RESULT

The linear programming approach

@ The LP that finds an optimal policy for the constrained MDP is LIP:

J*=min v(c) st v(r—(1—a)f) <0 and
v(B x A) = 6,(B) + a/ P(B|x, a)v(dx, da) for B C X.
K
@ We solve the finite state LP problem LPy
Jy :=min v(c) st v(r—(1—a)f) <0 and

V(B x A) = ,(B) + oz/]K Pn(B|x, a)v(dx,da) for B C X.
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MAIN RESULT

Steps of the proof

@ The kernel Py is not stochastic, and so there is no underlying
Markov decision process.

o If LP verifies the Slater condition
v(r—(1—a)b) <0 for some v,

then show that for large N the problem LLPy also satisfies the Slater
condition.

e Consequently, both optima are the fixed points of the operators T
and T, for

u(x,a) = c(x,a) — (A", r(x,a) — (1 — a)bo)

un(x,a) = c(x,a) — Ay, r(x,a) — (1 — a)bo).

@ Both cost functions being Lipschitz continuous, the corresponding
fixed points are “close” .
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MAIN RESULT

Main result

Theorem

Consider the Lipschitz continuous constrained MDP. Given an initial
state xop € X and an arbitrary ¢ > 0, there exists N such that

[J* — Iyl <e.

Moreover, N depends on explicitly known data (the Lipschitz constants
of the MDP, the norm of the cost functions, etc.).
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CONCLUSIONS

Conclusions

@ We have introduced a technique which allows to approximate
explicitly the solution of a constrained MDP.

@ We base our approach on the quantization of an underlying
probability distribution.

@ Our proofs are mainly based on finite state approximations of linear
problems, with a digression to dynamic programming techniques.

@ Numerical experimentation of this approach is in progress.
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CONCLUSIONS

Thank you for your attention.
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