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| will chat with you about ...
e A semipassivity-based approach to claim synchrony

— On semipassive properties of the electrical activity of an isolated [3-
cell.

— On conditions for synchrony in terms of semipassivity.

e Conditions for the emergence of bounded complex solutions

— On how changes on specific topological aspects produce transitions
among bounded behaviors of dynamical networks.

The complete version of results can be found at:
1. Automatica, year 2011, Vol. 47, pags 1243-1248,
2. Int. J. Systems Science, year 2011, i-first 569585.
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But, before that, let me address briefly the relevance
on this topic

Some problems seems unconnected to Chaos Theory: Diabetes
Mellitus is an example
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But, before that, let me address briefly the relevance
on this topic

Some problems seems unconnected to Chaos Theory: Diabetes
Mellitus is an example
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But, before that, let me address briefly the relevance
on this topic

Some problems seems unconnected to Chaos Theory: Diabetes
Mellitus is an example

2010 2030 INCREASE
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Africa 12.1 239 98%

Intarnalic]—:'.l.al I?ﬂ.iddltﬂ East and North Africa 36.6 51.7 9495
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Europe 55.2 66.2 20%
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Now, about relation between DM and complex
networks
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In Diabetes Mellitus, Pancreas is
miss-functioning

The B-cell activity plays “the role” in
using glucose for glucose
hemeostasis
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These facts lead us to observe shared premises and
guestions

Premises:
1.- Chaos theory can explain and model nonlinear phenomena

2.- Biodynamical phenomena related to glucose regulation are
nonlinear (possibly chaotic)

Current questions linking Chaos - Diabetes problems :
1.- Is the pancreatic islet of B-cell behavior synchronous ?

2.- Since each B-cell islet are very important in glucose regulation,
Does the synchrony phenomena make sense on them?
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Next, the semipassivity-based approach for
complex networks synchrony

In this part, we used the semipassivity framework to determine
synchrony conditions for networks of [3-cells under two
different situations:

e (i) homogeneous: networks of activated [(-cells where we
determine under what conditions synchronization is achieved

e (ii) heterogeneous: networks where we consider that before

coupling some [-cells are activated while the others are
inhibited.



A model for a single [B-cell

The model used this contribution corresponds to the electrical activity of
a Beta cell [Pernarowski (1998)]

du
dt
dw
dt
dc

E

= f(u) —w — k(e)
(oo (1) — ) (4)

|~

= c(h(u) — c).

where
U stands for the membrane potential,
W denotes the ionic channel activation, and
c refers to the concentration of agents that regulate bursting
electrical activity of the cell (as glucose, Ca*?, etc.).



A model for a single [B-cell
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Figure 1. U, wand c of an activated B-cell in isolation.
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Let us depart on semipassivity of B-cells

w(t) = Fl(x(t))+ Tu(t)
M

u(t) = ge Zauyj(f) = ge(a1,2(y1(t) — y2(t))
j=1

+ay3(yr(t) — ya(t) + ... + a1 (y1(t) — yar(t)))

where y;(t) = Cu;(t) = [1,0,0]x41(t) = x1(t), for i = 1,2, ..., M: and a;; < 0, for
L7 -
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A result on semipassivity of 3-cells

The system in (6) is called semipassive if there exists a storage function V € Ct,
V:R? — Ry, with V(0) = 0; and a.a € Ko two class-k functions, such that

L ae®)]) < V(e(t) < a(l|z(¢)]). and

2 V(a(t)) = a‘;;fg))fw). u(t)) < y(t)u(t) — H(z(t)

where the scalar function H(z(t)) : R®> — R is nonnegative for x(t) lying outside
some ball B ¢ R?; that is, there exists a number » € R and some non-negative
function ¢ : R? — R defined for ||z(¢)|| > r, such that:

H(x(t)) = q([lz(t)]]), for ¥ [lz(t)|| = r
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First, we show each [-cell is semipassive

Lemma 3.2 Fach (3-cell in the pancreatic islet described in (4) is strictly semi-
PASSLVE.,

#(t) = F(x(t))+ Bult)

where the input is given by

M

u(t) = gy ayui(t) = gelara(vi(t) — ya(t))

7=1
+ara(yi(t) —wys(t)) + ... +arm(yi(t) —une(t)))

with yi(t) = Czi(t) = [1,0,0]zi1 (t) = zir(t), and B =T.

Vi(x(t) =

b=

(23 (t) + pa3(t) + 5a3(t))
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The time derivative of the storage function along trajectories is given by

V(e(®) = a1(t)[f(=

Using the Pernarowski’s model

H(x(t))
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%3:1?3 (f)Q + "l-’_gl‘-g(f) — fg;rl(t)S — MW (f)
—fg;lfl(t)il — ,u.wgil?l(t)QIQ(f)
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Coloquio de Sistemas Estocasticos 2011 14



H(x(t))

{ x(t) € R®
B =
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x1(t) [f(21(t)) — x2(t) — k(xs(t)) + u(t)]
+,ux2 (1) [% Wae (1 (1)) — Jfg(t))}
+2gea(t) [s(h(x1 () — xa(t))]
y(tyu(t) — H(x(t))

%:r.:}(t)g + vgrs(t) — for1(t)? — pwora(t)
— fax ()t = pwsxy (t)%ao(t)

+pa(t)? — (pwi — 1) (t)a ()
—fre1(t)? — pwsay (t) ao(t)

z1 ()] > 7551 lz2 ()] > | =rz—1| and }

(Aot 103D
|z3(t)|| > || Fvg]
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Lemma 2. Consider the network of N nodes linearly and diffusively coupled
described by (21). If each node in the network is a semipassive system such
that (18)-(20) are satisfied, the solutions of all the connected systems in the
network, independently from the initial conditions, will eventually end up
within some ball B of the state space of the network.

Theorem 3 Consider an islet with k B-cells coupled. There exists a constant g_* > 0
such that if g k > g * and the islet consists of

(1) k, active cells and k, inactive cells, then the active cells synchronize with each
other and the inactive cells synchronize with each other but the active cells do

not synchronize with the inactive cells;

(2) k active cells or k nactive cells, 1.e. all B-cells are either active or inactive, then
all cells synchronize.
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Lyapunov exponents

But, as ussual, systems can be more complicated ... from here,
the dynamical transitions ...

Lyapunov exponents 1

h; = lim —|J(¢t, z0)u;|, 1=1,2,3
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This means that the single cell activity
is inhibited.

We are interested in showing how
the connections of the network can
synchrony a cluster of inhibited Beta
cells.
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But, as ussual, systems can be more complicated

27/10/2011

the dynamical transitions ...

N
%= f(xi)+cy aylx;, i=1,2,...,N
j=1

Connectivity Matrix
A = (aj) € RN*VN
is such that
O=A1>X>A3>...> AN.

According to [Wu and Chua (1995)] if

3’\2_33—3

[

... from here,

zero is an exponentially stable point of a node in isolation.
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But, as ussual, systems can be more complicated ... from here,
the dynamical transitions ...

e The tLe’s of a network of identical systems are determine from the
Lyapunov exponents of a node in isolation (h,) and the eigenvalues of the
connectivity matrix (A,) as [Barajas-Ramirez and Femat (2008)]

pi(Ak) =h; + Ay

with pw(A,) as the tLe associated to the i-th local direction of a single cell
and the k-th node along the corresponding eigenvector of the coupling
matrix A.
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But, as ussual, systems can be more complicated ... from here,
the dynamical transitions ...

 The synchronized solution of the network is stable if all the transverse
direction are contracting.

 The smallest value of c such that this occurs is when the largest tLe
becomes positive, i. e., u1(N) > 0 or equivalently
h1

_— = |-‘:|

AN

e The emergence of chaotic solutions require an extra condition, to ensure
that all the trajectories of that move away from the unstable synchronized
solution remain bounded.
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Lemma 1. [13, 14] If there exists a positive definite symmetric matrix
R™*™ such that all eigenvalues A;(Q) of the symmetric matrix

. T
Qe (t).u(t) = 5 [P ( L (alt) u(t))) + (5 e0.u0) P

are negative and separate from zero, 7. e., there exists a ¢ > 0 such that
AN(Q) < —0<0fori=1,..,m; and Vz(t) € R™ with u(t) € D

Then, the system in (14) is convergent in the class D.
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According to [Barajas-Ramirez and Femat (2008)] , this is expected when
the overall sum of tLes associated with each node are negative, i.e.,

Z pi(Ar) < 0, for any k
=1
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Lorenz

Firstly a system as benchmark

2t (a)
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The estimated critical portion n* is indicated by the thick gray line. The gray
area indicates the region where we can ensure that there is still activity of the
islet.

For instance, for large gk at least 30% of the cells should be active to have any
activity of the islet.

The circles in Figure 4 indicate the critical portion obtained by numerical
simulations of an islet with k = 100 cells.



Coming back to b-cells problem
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Case 1. The location of the equilibrium of the inactive cluster (£71,£5 1,5 1) does not change due to
the interaction with the active cluster. This is the case when the portlon of active cells is small, i.e. n — 0.

Let (£75.£59,&55) be the equilibrium of the active cluster, then if the equilibrium is at the left knee we
require

= S(&75) — 0{&7 5 + 2}
+9ck(1=n7) (€01 — &1 2). (31)
0= 5"(612) — gek(1 —n"). S"(&12) > 0, (32)
where S (&1,m) = f(&1,m) = Woo(E1,m) + ¢m and " indicates the derivative with respect to &; ,,,. Here (31)
is the equilibrium equation for the active cluster and (32) is the condition that guarantees the equilibrium

to be at the left knee. Solving (31), (32) for the given model parameters results in g.k(1 — n*) = ¢ with

¢~ 1.213. Since 1" € [0, 1] it follows that " = max(0,1 — g—k)

‘53,171

S-shaped curves of the uncoupled, 1.e. tm = 0, active cluster (cm = 1.184) and inactive cluster (cm
presented are the S-shaped curve corresponding to o, = 0 and the line £, = 8&  + 1.250).
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Case 2. The equilibria of both the active and inactive cluster are at the left knee of the S-shaped
curve with ¢,, = 0. This happens if the coupling strength g.k is large. In Figure this corresponds to
shifting the S-shaped curve of the active (inactive) cluster to the left (right) by an amount of ¢; (¢9) such
that the S-shaped curves of the active and inactive cluster coincide with the S-shaped curve with ¢, = 0.

Thus we require
0= gckn™ (&2 — &7 1) + 1,
0= 5"{3}"3(1 - '??*)(c‘;ﬁ - gi?) + 9.

from which it follows that * = —=— ~ 0.297.
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Experimental realization of the synchronization of a globally coupled
network of seven cells with coupling strength c = 0.6. Here we show
only the number of inputs in an oscilloscope.
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Final Remarks

We used four different network topologies for ensembles of B-cell models
and investigated conditions for synchronization and emergence of chaotic
bursting on activated and inhibited cells, respectively.

An electronic setup to experimentally validated the theoretical results was
successfully realized. The results presented have potential applications on
explaining some aspects of biological processes.

In particular, the electronic realization may help physicians with
experimental setups of [-cells, due to its ease of interpretation and
manipulation.



Final Remarks

For future research, it maybe possible to have different coupling strengths
for different connections.

Although this might give a more accurate representation of the real
coupling between -cells in the Langerhans islet, it will also be more
difficult to analyze.

Another remark is that partial synchronization, that is, where only a part
of the network synchronizes, was observed numerically and
experimentally for coupling strengths smaller than the coupling strength
needed for complete synchronization.

Further knowledge about this phenomenon maybe of significance for
some specific biological purpose, however, this will be subject for future
research
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