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INTRODUCTION
OTHER APPROACHES

DYNAMIC PROGRAMMING

Plays an overwhelming role in solving Stochastic Control
Problems

It is a theory of su�cient conditions of optimality

Provides an optimal control as a feedback

In non-smooth cases provides an equation for the value
function ( viscosity solution )
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OTHER APPROACHES

MARTINGALE METHODS

Mathematical Finance considers speci�c problems of stochastic
control

Major example, Consumption-investment optimization
problem, Karatzas, Shreve (1998)

Can handle non-markovian cases

Direct approach possible, thanks to the speci�c form of the
problem

In principle, equivalent to Dynamic Programming in the
Markovian case
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ECONOMIC FRAMEWORK

Consider an investor or an entrepreneur, who increases his/her
wealth thanks to personal e�orts and adequate choice of
projects

Personal e�orts have a deterministic positive impact on the
wealth, but entail also a cost in the objective function of the
investor

Projects are scalable, with increasing expected return but also
with increasing risk

We consider a �nite horizon problem
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EVOLUTION OF WEALTH

Consider a probability space (Ω,A ,P) and a one-dimensional
Wiener process w(t). We denote by F t the �ltration generated by
the Wiener process. The wealth X (s) satis�es

dX = δu(s)ds + v(s)X (s)(αds +dw(s)), s > t (1)

X (t) = x

We denote by Xxt(s) the solution, to indicate initial conditions.
The wealth depends on two controls, u(s) the level of e�ort and
v(s) the scale of projects. They are adapted processes such that

u(s)> 0, E
∫

T

t

u(s)2ds <∞, v(s)X (s)> 0, E
∫

T

t

(v(s)X (s))2ds <∞

The constants δand α are strictly positive.
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PAYOFF FUNCTIONAL I

We see that the e�ort has a direct deterministic positive impact on
the wealth evolution. An increase of the scale of projects has a
positive impact on the expected return, but elicits also an increase
of the risk. The objective functional is de�ned as follows

Jx ,t(u(.),v(.)) = E [F (Xx ,t(T ))− 1

2

∫
T

t

u(t)2dt] (2)

The second term represents the desutility of the e�ort. The �rst
term represents the utility of the �nal wealth. We assume

F (x) = log(w + (x−K )+) (3)
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PAYOFF FUNCTIONAL II

The agent is risk-averse. The number w ( not to be confused with
the Wiener process ) is ≥ 0 . It represents a minimal subsistance
level. The number K is a debt that the agent must reimburse at
time T . We may associate this debt to an amount which is
borrowed at time t. If the entrepreneur borrows L at the origin of
the activity, then we have

x = x0 +L

in which x0represents the initial capital.
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CREDIT RISK

The bank must determine the amount L in terms of K . This
problem can also be treated in the present framework. It
contributes to the theory of credit risk. We may add an additional
degree of di�culty assuming that we do not know exactly α,but we
know only that it is in a range [α0,α1], with α0 > 0 and α1 < ∞.
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BELLMAN EQUATION I

We de�ne the value function

Φ(x , t) = sup
u(.),v(.)

Jx ,t(u(.),v(.)) (4)

We expect the function Φ to be increasing and concave in x . The
Bellman equation is easily written as

∂ Φ

∂ t
+ sup

u

(−1
2
u2 + δu

∂ Φ

∂x
) + sup

v

(αvx
∂ Φ

∂x
+
1

2
x2v2

∂ 2Φ

∂x2
) = 0 (5)

with initial condition

Φ(x ,T ) = F (x) (6)
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REWRITING BELLMAN EQUATION I

We write Bellman equation as follows

∂ Φ

∂ t
+

δ 2

2
(
∂ Φ

∂x
)2− 1

2
α
2

(
∂ Φ

∂x
)2

∂ 2Φ

∂x2

= 0 (7)

after performimg the optimization in u and v .
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FEEDBACKS

We then have the feedbacks

u(x , t) = δ
∂ Φ

∂x
, xv(x , t) =−α

∂ Φ

∂x
∂ 2Φ

∂x2

(8)

These feedbacks satisfy the positivity conditions, if the solution is
monotone increasing and concave.
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GENERIC SOLUTION I

Remarkably, in spite of its apparent complexity, Bellman equation
has a generic solution, given by the following procedure

Φ(x , t) = Ψ(λ (x , t), t) (9)

where

Ψ(λ , t) =
2

α2
(A logλ + (B exp−α

2t +
1

2
δ
2)

λ 2

2
) +At +L (10)

and λ is de�ned by the equation

−A
λ

+ (B exp−α
2t +

1

2
δ
2)λ =

α2

2
x +C (11)

in which A,B,C ,L are arbitrary constants.
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CONDITIONS FOR SOLUTION I

The proof can be shown by direct checking. In particular, one
checks that

∂ Φ

∂x
= λ ,

∂ Φ

∂ t
= A+ λ

2B exp−α
2t (12)

∂ 2Φ

∂x2
=

α2

2

λ 2

A+ λ 2(B exp−α2t +
δ 2

2
)

(13)
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CONDITIONS

We must take the positive solution of (11), which implies that A

and B exp−α2t +
1

2
δ 2 have the same sign. From the concavity

condition we must have

A< 0, −B exp−α
2T >

δ 2

2
(14)
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MATCHING THE FINAL CONDITION I

Unfortunately, a problem arises when we try to match the �nal
condition

Φ(x ,T ) = F (x) = log(w + (x−K )+)

We must have

λ (x ,T ) =
1Ix>K

w + x−K
This expression is discontinuous at x = K . A matching is possible
for x > K . We obtain

A =−α2

2
, B =−δ 2

2
expα

2T , C =−α2

2
(K −w)
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MATCHING THE FINAL CONDITION II

However this matching will not be valid when x < K , where

λ (x ,T ) = 0. If we match Φ(x ,T ) at x > K , we obtain L =
α2

2
T .

However, the full matching is impossible. Therefore, the generic
solution (9),(10),(11) of Bellman equation does not provide the
value function.
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COMMENT I

We cannot think either to a non-smooth solution of Bellman
equation. Indeed, as we shall see the value function is smooth, for
t < T . In spite of the smoothness, it will not satisfy Bellman
equation.
IS THERE A CONTRADICTION?

No, because Dynamic Programming is a su�cient condition, not a
necessary condition.
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EXPRESSION

Note that (11) yields

1

λ
=

1

2
(x−K +w +

√
(x−K +w)2 +4δ 2T̃t) (15)

where we have set

T̃t =
expα2(T − t)−1

α2
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CASE w = 0 I

Curiously, things improve when w = 0. A priori, things look worse,
because

F (x) = log(x−K ), if x > K ; F (x) =−∞, if x > K

We must interpret λ (x ,T ) as follows

λ (x ,T ) =

∣∣∣∣∣∣
1

x−K
if x > K

+∞ if x < K
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EXPRESSION

We can check that

1

λ
=

1

2
(x−K +

√
(x−K )2 +4δ 2T̃t)

When t = T we get
1

λ
= 0 , when x < K and the matching is valid.

In this case the generic solution is the value function.
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NEW CONTROL PROBLEM I

We introduce the martingale Z (s) de�ned by

dZ =−αZdw(s), s > t (16)

Z (t) = 1

then, combining with the wealth equation, we get

d XZ = δZ (s)u(s)ds +Z (s)X (s)(v(s)−α)dw(s) (17)

XZ (t) = x
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FORMULATION

Hence, by integration

EX (T )Z (T ) = x + δE

∫
T

t

Z (s)u(s)ds (18)

The idea is to consider a control problem in which X (T ) and u(.)
are the decision variables. The objective is to optimize the payo�

J (X (T ),u(.)) = E [F (X (T ))− 1

2

∫
T

t

u(s)2ds] (19)

subject to the single constraint (18), which is called the budget
equation.
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COMMENTS

In the new problem, the control v(.) has been discarded, as well as
the evolution equation of the wealth (1) or equivalently (17). This
is possible, because v(.) does not appear explicitly in the objective
functional (19), nor in the constraint (18).
Of course the two problems are not equivalent. In fact, we can
claim that

sup
budget equation

J (X (T ),u(.))≥ Φ(x , t)

since the initial problem is equivalent to the new problem,
reinstating the evolution (17) as a constraint. The new problem is
no more a control problem, since there is no state evolution. X (T )
is any FT random variable, and the budget equation is a
constraint on this random variable.
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EQUIVALENCE CONDITIONS I

Suppose we can solve the new problem and get a solution denoted
by X̂ (T ), û(.) ( note that it depends on the pair x , t). In the case
it is possible to �nd v̂(.) such that X̂ (T ) is the �nal value of an
evolution equation

dX̂ = δ û(s)ds + v̂(s)X̂ (s)(αds +dw(s)), s > t (20)

X̂ (t) = x

then it means that the additional evolution equation, considered as
a constraint is automatically satis�ed. If this happens to be true,
then the two problems are equivalent.
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COMMENT

We note that, solving the new problem is a priori easier, since we
have a single scalar constraint in a stochastic optimization problem,
and not a stochastic control problem.
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LAGRANGE MULTIPLIER I

We treat the budget equation with a Lagrange multiplier. We will
denote it by λ , in fact λ (x , t). Although we use the notation

introduced in the case of Bellman equation to represent
∂ Φ

∂x
, an

important observation will be that it will not coincide with the
derivative in x of the value function, which is consistent with the
statement that the generic solution of the Bellman equation does
not coincide with the value function.
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OPTIMIZATION

We then consider the problem, without constraint,

sup
X (T ),u(.)

E [F (X (T ))− 1

2

∫
T

t

u(s)2ds−λX (T )Z (T )+λδ

∫
T

t

u(s)Z (s)ds]

(21)
In (21) λ is a constant, which we postulate will be positive, and
there are no constraints on the pair X (T ), u(.).
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SOLUTION I

The optimization in u(.) is straightforward. We get

û(s) = δλZ (s) (22)

To obtain the optimal X (T ) we have to mazimize in y the function
F (y)−zy in y , where z is the �xed value λZ (T ) , which is positive.
A quick analysis yields that the optimum of F (y)−zy is attained at

ŝ(z) = (K −w +
1

z
)1I

z< 1
w

(23)

We observe that this function is discontinuous, at point
1

w
. If

w = 0, it becomes continuous, equal to K +
1

z
.
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OPTIMAL v̂(s)
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EQUATION FOR λ I

We write the budget equation

x = E ŝ(λZ (T ))Z (T )−λδ
2E

∫
T

t

Z 2(s)ds

A quick observation is that

E

∫
T

t

Z 2(s)ds = T̃t =
expα2(T − t)−1

α2

The term in Z (T ) is a little bit more involved. Eventually, we get
the equation

x = G (λ , t) (24)
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EQUATION FOR λ II

with the de�nition

G (λ , t) = (K −w)N(−d1(λ , t)) +
1

λ
N(−d2(λ , t))−λδ

2T̃t (25)

in which

d1(λ , t) =
1

α
√
T − t

logλw +
α
√
T − t
2

(26)

d2(λ , t) = d1(λ , t)−α
√
T − t (27)

and N(x) represents the cumulative distribution function of the
standard gaussian random variable.
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PROPERTIES OF G (λ , t) I

We have for t < T ,we have

G (0, t) = +∞, G (+∞, t) =−∞

∂G

∂λ
(λ , t) < 0

The �rst two properties are immediate. The monotonicity is more
elaborate. We write

G (λ , t) = KN(−d1(λ , t)) +
1

λ
U(logλw , t)−λδ

2T̃t

with
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PROPERTIES OF G (λ , t) II

U(x , t) = N(− 1

α
√
T − t

x +
α
√
T − t
2

)−

−exp x N(− 1

α
√
T − t

x− α
√
T − t
2

)
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PROOF I

In the expression of U(x , t), x is a real number. We note that

U(−∞, t) = 1, U(+∞, t) = 0

Moreover

∂U(x , t)

∂x
=−exp x N(− 1

α
√
T − t

x− α
√
T − t
2

) < 0

which implies also U(x , t) > 0.
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PROOF

But then

∂ [
1

λ
U(logλw , t)]

∂λ
< 0

The other terms in the expression of G (λ , t) are also decreasing,
which implies G (λ , t) is decreasing.
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DEFINITION OF λ (x , t) I

It follows that the Lagrange multiplier λ = λ (x , t) is uniquely
de�ned by equation (24) and positive for any x and t < T . For
t = T we have

G (λ ,T ) =

∣∣∣∣∣∣∣
0 if λ >

1

w

K −w +
1

λ
if λ <

1

w

(28)

We observe again a discontinuity. Moreover, we can solve the
equation x = G (λ ,T ) only for x > K . Since one cannot get a �nite
Lagrange multiplier at time t = T ,when x < K we shall set

λ (x ,T ) =

∣∣∣∣∣∣
1

w + x−K
if x > K

+∞ if x < K
(29)
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DEFINITION OF λ (x , t) II

We then have

X̂ (T ) = (K −w +
1

λZ (T )
)1I

λZ(T )<
1

w

(30)

Alain Bensoussan, Abel Cadenillas, Hyeng Keun Koo , Jaeyoung SungCOMPARISON BETWEEN MARTINGALE METHODS AND DYNAMIC PROGRAMMING



OBJECTIVES
SELECTION OF EFFORT AND VOLATILITY

DYNAMIC EQUATION APPROACH
MARTINGALE METHODS

STOCHASTIC CONTROL PROBLEM
FURTHER COMPARISON

THE CHOICE OF λ

OPTIMAL v̂(s)
COMPARISON WITH DYNAMIC PROGRAMMING

OPTIMAL STATE TRAJECTORY I

In order to check that the new problem provides a solution of the
initial control problem we must de�ne a process v̂(s)such that the
trajectory de�ned by equation (20) has a �nal value X̂ (T ) which
coincides with (30). It is useful to perform the following standard
transformation

w̃(s) = w(s) + αs, F s

t = σ(w(u)−w(t)|t ≤ u ≤ s)
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CHANGE OF PROBABILITY

dP̃

dP
|F s

t
= Z (s)

then w̃(s)− w̃(t) is a Ω,A , P̃,F s
t standard Wiener process, and

the evolution equation (20) becomes

dX̂ = λδ
2Z (s)ds + v̂(s)X̂ (s)dw̃ (31)
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OPTIMAL X̂ (s) I

From (31) we obtain

X̂ (s) = Ẽ [X̂ (T )−λδ
2
∫

T

s

Z (u)du|F s

t ]

Since

dZ =−αZ (s)d ˜w(s) + α
2Z (s)ds
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CALCULATION

we have

Ẽ [Z (u)|F s

t ] = Z (s)expα
2(u− s), ∀u ≥ s ≥ t

and

Ẽ [
∫

T

s

Z (u)du|F s

t ] = Z (s)T̃s
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FORMULA I

We get

X̂ (s) = Ẽ [X̂ (T )|F s

t ]−λδ
2Z (s)T̃s (32)

From equation (30) we can compute the conditional expectation.
We get the following important result

X̂ (s) = G (λZ (s),s) (33)

and for s = t we recover formula (24).
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P.D.E. I

A tedious calculation shows that G (x , t)is the solution of the P.D.E.

∂G

∂ t
+ α

2(x
∂G

∂x
+
1

2
x2

∂ 2G

∂x2
) = xδ

2 (34)

G (x ,T ) =

∣∣∣∣∣ K −w +
1

x
if xw < 1

0 if xw > 1
(35)
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OPTIMAL FEEDBACKS I

We can use Ito's calculus to expand (33) and compare with
equation (31). We can identify v̂(s) by

v̂(s)X̂ (s) =−αλZ (s)
∂G

∂x
(λZ (s),s) (36)

Applying with s = t we obtain the optimal feedbacks

û(x , t) = δG−1(x , t) = δλ (x , t) (37)

v̂(x , t) =−α

x
G−1(x , t)

∂G

∂x
(G−1(x , t), t) (38)

=−α

x
λ (x , t)

∂G

∂x
(λ (x , t), t)
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OPTIMAL FEEDBACKS II

Moreover the feedbacks satisfy the positivity conditions.
Since we have obtained û(s)and v̂(s) we can claim that the new
problem solution is also the solution of the initial stochastic control
problem.
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VALUE FUNCTION I

We can next compute the value function

Φ(x , t) = E [F (X̂ (T ))− 1

2
λ
2
δ
2T̃t ] (39)

In a way similar to that developed for the D.P. approach ( see (9),
we can write the value function as follows

Φ(x , t) = Ψ(λ (x , t), t) (40)

with
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VALUE FUNCTION II

Ψ(λ , t) = log w N(d2(λ , t)) + (
α2

2
(T − t)− logλ )N(−d2(λ , t))

(41)

+
α
√
T − t√
2π

exp−1
2

(d2(λ , t))2− λ 2δ 2

2
T̃t

We note that

Ψ(λ ,T ) =

∣∣∣∣∣ logw if λw > 1

log
1

λ
if λw < 1

and in view of the de�nition of λ (x ,T ), see (29) we recover
Φ(x ,T ) = F (x).
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LAGRANGE MULTIPLIER I

Considering the formulas giving û(x , t) from Dynamic Programming
and Martingale approach, they agree only whenever

λ (x , t) =
∂ Φ(x , t)

∂x

We check that this is not true. Indeed,

∂ Φ

∂x
=

∂ Ψ

∂λ

∂G

∂λ
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COMPUTATION I

and

∂ Ψ

∂λ
=− 1

λ
−λδ

2T̃t +
1

λ
N(d2)

∂G

∂λ
=− 1

λ 2
−δ

2T̃t +
1

λ 2
N(d2)−

1

αλ
√
2π(T − t)

[(K −w)exp−1
2
d 2
1 +

1

λ
exp−1

2
d 2
2 ]

− 1

αλ
√
2π(T − t)

[(K −w)exp−1
2
d 2
1 +

1

λ
exp−1

2
d 2
2 ]

and the ratio is not λ .
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OBTAINING FIRST DERIVATIVES I

We have already obtained
∂ Φ

∂x
. We then notice that

∂ Φ

∂ t
=

∂ Ψ

∂ t
− ∂ Φ

∂x

∂G

∂ t

and

∂ Ψ

∂ t
=−α2

2
+λ

2 δ 2

2
(1+α

2T̃t)+
α2

2
N(d2)− α

2
√
2π(T − t)

exp−1
2
d 2
2
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DERIVATIVES

∂G

∂ t
= λδ

2(1+ α
2T̃t)−

− 1

2(T − t)
√
2π

[(K −w)d2 exp−
1

2
d 2
1 +

1

λ
d1 exp−

1

2
d 2
2 ]
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SECOND DERIVATIVE I

We have

∂ 2Φ

∂x2
=

∂ 2Ψ

∂λ 2
− ∂ Φ

∂x

∂ 2G

∂λ 2

(
∂G

∂λ
)2
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FURTHER CALCULATIONS

We recall that

α2λ 2

2

∂ 2G

∂λ 2
= λδ

2− ∂G

∂ t
−α

2
λ

∂G

∂λ

and

∂ 2Ψ

∂λ 2
=

1

λ 2
−δ

2T̃t −
1

λ 2
N(d2) +

1

λ 2α
√
2π(T − t)

exp−1
2
d 2
2
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NEGATIVE STATEMENT I

From the computations above, we conclude that the value function
has smooth derivatives. Of course, the smoothness is only valid for
t < T . This implies that Bellman equation is not satis�ed. In
addition, the generic solution of Bellman equation is di�erent from
the value function.
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REIMBURSEMENT I

To apply the preceding theory to the problem of credit risk, we
recall that the initial wealth x is given by

x = x0 +L

in which L is the amount borrowed from the bank. There is a
relation between L and the amount recovered by the bank at time
T , which is
min(K , X̂ (T )). So we must have ( chosing a discount factor r )

L = exp−r(T − t) Emin(K , X̂ (T )) (42)

Recalling the value of X̂ (T ) (30), we obtain easily
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REIMBURSEMENT II

L= exp−r(T−t)K E1I
λZ(T )<

1

w

=K exp−r(T−t)N(−d2(λ (x , t)))

(43)
From the de�nition of λwe get x = G (λ , t),so we obtain the
following equation

x0+K exp−r(T−t)N(−d2) = (K−w)N(−d1)+
1

λ
N(−d2)−λδ

2T̃t

(44)
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SOLUTION I

We solve (44) in λ , for K given. We want λ > 0.Once this is done,
(43) provides the value of L in terms of K . We note that both the
left and right hand side of (44) are decreasing functions of λ , on
R+. The left hand side decreases from x0 +K exp−r(T − t) to x0
and the right hand side from +∞ to −∞. Since they are continuous
functions of λ it is certain that the two curves cross at a point
λ > 0. We cannot claim uniqueness, although for economic reasons,
it is hard to justify multiple solutions. At any rate, we take the
smallest possible λ , which yields to the largest possible L.
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AMBIGUITY I

Suppose we do not know exactly the value of α,but we know that
α0 < α < α1, with α0 > 0. In that case, we change the payo�
functional into

inf
α
Jx ,t(α;u(.),v(.))

where we have emphasized the dependence in α of the payo�
functional. So the problem becomes

sup
u(.).v(.)

inf
α
Jx ,t(α;u(.),v(.))

Alain Bensoussan, Abel Cadenillas, Hyeng Keun Koo , Jaeyoung SungCOMPARISON BETWEEN MARTINGALE METHODS AND DYNAMIC PROGRAMMING



OBJECTIVES
SELECTION OF EFFORT AND VOLATILITY

DYNAMIC EQUATION APPROACH
MARTINGALE METHODS

STOCHASTIC CONTROL PROBLEM
FURTHER COMPARISON

DERIVATIVES OF THE VALUE FUNCTION
CONCLUDING REMARKS

AMBIGUITY II

For x > 0, and positive controls u(.).v(.) the wealth process X (s) is
positive and increasing in α. Therefore, Jx ,t(α;u(.),v(.)) is
increasing in α. Hence

inf
α
Jx ,t(α;u(.),v(.)) = Jx ,t(α0;u(.),v(.))

Therefore, the problem reduces to considering that α = α0.
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Thanks!
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